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RIEMANNIAN MANIFOLDS ADMITTING A CONFORMAL
TRANSFORMATION GROUP

KENTARO YANO & SUMIO SAWAKI

1. Introduction

The purpose of the present paper is to generalize some of the known re-
sults on Riemannian manifolds with constant scalar curvature admitting a
group of nonisometric conformal transformations.

Let M be a connected Riemannian manifold of dimension n, and g;;, 7,
K,;:*, K;;=K,;;* and K = K;,g/%, respectively, the positive definite funda-
mental metric tensor, the operator of covariant differentiation with respect to
the Levi-Civita connection, the curvature tensor, the Ricci tensor and the

scalar curvature of M, where and in the sequel the indices 4, i, j, &k, - - - run
over the range 1, .- -, n.
If we put
(1.1) Gji=Kji——I£gji,
n
(1.2) Zisi" = Ky — ——I-<~—(5;}:gjz—5?gki) 5
nin —1)
we have
(1.3) Zi;t =Gy, Gug7=0.

When M admits an infinitesimal transformation v*, we denote by & the
operator of Lie derivation with respect to v*. Thus, if M admits an infinites-
imal conformal transformation v, we have

(1.4) L8y =V +Vw; =208, Lg"= —2pg"

for a certain scalar field p. We denote the gradient of o by p; =F,p.
For an infinitesimal conformal transformation »* in M, we have [5]

(1.5 LKt = — W, p: + B?Vkpi — Vkp"gﬂ + Vjphgki s
(1.6) FKjy=—n—-2F;0, — 084,
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(1.7 LK = —2(n— Ddp —2pK,
where
(1.8) dp = gitl;V,p .

Thus, in M with K = const. we have

(1.9) do=—_K
n—1
We also have
(1.10) PGy = — (n—2)<‘7jpi - —I—Apgji) ,
n

LZyj" = — 6V 100+ pi—Vi0"85:+ V08

(1.1
+%AP(6Zgji — 8%8ui) .

Thus, in M with K = const. we have

K ]
nn— 1

We denote by C,(M) the largest connected group of conformal transforma-
tions of M and by I, (M) that of isometries of M.

We first state here known results on Riemannian manifolds with K = const.
admitting a conformal transformation group, and then try to generalize them.

Theorem A (Lichnerowicz [3]). If M is a compact Riemannian manifold
of dimension n > 2, K = const., K;Kit = const., and C(M) = I,(M), then
M is isometric to a sphere.

Theorem B (Lichnerowicz [3], Yano & Obara [7]). If a compact Rie-
mannian manifold M of dimension n > 2 with K = const. admits an infini-
tesimal nonisometric conformal transformation v* . £g;; = 2pg,;, p # const.,
and if one of the following conditions is satisfied, then M is isometric to a
sphere:

(1) The vector field v* is a gradient of a scalar.

(2) K*p* = kp", k being a constant.

(3) ¥K;; = agji, a being a scalar field.

Theorem C (Hsiung [11). If M is compact and of dimension n > 2,
K = const., K, ;;,K*7i" = const., and Cy(M) £ 1,(M), then M is isometric to
a sphere.

Theorem D (Yarno [6]). If M is compact orientable and of dimension
n > 2 with K = const., and admits an infinitesimal nonisometric conformal

(1.12) LGy=—(n 27,0+
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transformation v*: £g;; = 208, p + Const., such that ijipipidV is non-
M

negative, dV being the volume element of M, then M is isometric to a
sphere.

Theorem E (Yaro [6]). If M is a compact and of dimension n > 2 with
K = const., and admits an infinitesimal nonisometric conformal transformation
v Lgi =208, pF const., such that £(G;;G7?) = const. or L(Z, i, 247 *)
= const., then M is isometric to a sphere.

Theorem ¥ (Hsiung [2]). Suppose that a compact Riemannian manifold
M of dimension n > 2 with K = const. admits an infinitesimal nonhomothetic
conformal transformation v*. If

(1.13) AL (2, 2%70) + 2a + nb)b#(G;,G'Y) = const.
where a and b are constants such that
(1.14) c=4a>4+ 2(n — 2)ab + n(n — 2)b* >0,

then M is isometric to a sphere.

To prove and generalize these theorems, we need the following

Theorem G (Obata [4]). If a complete Riemannian manifold of dimen-
sion n > 2 admits a nonconstant function p such that

(1.15) ViV.p= — co8j: ,

where ¢ is a positive constant, then M is isometric to a sphere of radius 1/c
in (n 4+ 1)-dimensional Euclidean space.

We also need following integral formulas proved in [6].

If a compact orientable Riemannian manifold M of dimension » > 2 with
K = const. admits an infinitesimal nonhomothetic conformal transformation
vh . ¥g; = 2pg;:, p + const., then we have

(1.16) f G uplpidV = .__1_2. f [2pzcjicfi + —zl—pf(GﬁGfi)]dV,
n —_—
M oM

1.17) f Guol0'dV = f [%pzzmzwm + %py(zkﬁhzw)}dv.
M M

2. Generalization of Theorem B, (2), (3)

Theorem 2.1. If a compact orientable M of dimension n > 2 with K
= const. admits an infinitesimal nonhomothetic conformal transformation
vt Lg = 2085, p F const., such that



164 KENTARO YANO & SUMIO SAWAKI

@2.1) Z(Gi¥G,) <0,

then M is isometric to a sphere.

We need the following

Lemma 2.1. If a compact orientable M admits an infinitesimal conformal
tsansformation v*: £g;; = 2pg;;, then we have

2.2) f oFdV = — L f SFdV
M R M

for any function F.

Proof. Since p = l17 sU¢, we have, by Green’s theorem,
n

f pFdV = L f 7 w)FdV
M h M

= — X (pep Fav
n
M

=—if,sdeV.
n
M

Proof of the Theorem. Substituting
into integral formula (1.16), we find

1
n—2

M M

Consequently, by Lemma 2.1 and the assumption of the theorem, we have

1

feuwwpav = — 1 [2Gr26,0av 0.
) nn —2) ,

Thus M is isometric to a sphere by Theorem D.
Remark 2.1. Since

4

(2.5) ijihgzkjih = Gjingi 5

the condition (2.1) of the theorem can be replaced by

2.6) L(ZF1,FZy ;") < 0.
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Remark 2.2. As the proof of the theorem shows, condition (2.1) can be
replaced by

2.7 LGCHLGC) = 2, fde <0.

M

The same remark applies to Theorems 4.1, 4.3, 5.1, 6.1, 6.2 and 6.4.
Remark 2.3. Theorem 2.1 generalizes Theorem B, (2). In fact, using
Kot = kp*, V;Ki* =0,V v, + V;v; = 2pg;; and V; v = np, we have

Vj(Kjipvi) = Kjipj’vi + Kjiij'vi
= k‘Oz'UL + %K'”‘O(VJ'UZ—’-VL'DJ

= kP (pv¥) — kol ;v + Kp*
= kV;(pv?) — nkg® + Kg*,

from which, by integration,

f (K — nk)gdV =0,
M

and consequently k = K/n.
Thus, from K;*p? = kp* we have

<Kj£ - Eg'”>(oL =0 B
n
(Kji - Egﬁ)[/_jﬁi =0,
n
and consequently, by virtue of (1.10),
GJZ(.,‘?GJZ) = 0 .

Remark 2.4. Theorem 2.1 generalizes Theorem B, (3). In fact, from (1.6)
and YK ;; = ag;; we find

—(n—2)V;p; — dpgji = agy: ,
from which
o= —2(n-— 1)Ap/n,

and consequently
—(n—-2) (VJP'L — %Apgji) =0,

that is, #G,; = 0.
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Remark 2.5. If G/*¥#G,; = const., then (2.1) is automatically satisfied,
but under our assumption the constant must be zero. In fact, making use of
(1.3) and F;G7% = 0, from (1.10) we have

GIi#G,, = —(n—2)GF;p;
= —(n=2)V;(G*p,),

and consequently by integration over M we find
fGJlgGJZdV = O .
M

Thus, if GI*.#G;; = const, the constant must be zero.

3. Decomposition of a conformal Killing vector

Theorem 3.1. If a compact orientable M of dimension n > 2 with K
= const. admits a conformal Killing vector field

3.D vt = p* + g*,

where p" is a Killing vector field and g* = V*q, q + const. is a gradient
conformal Killing vector field, then M is isometric to a sphere.

Conversely, if a sphere of dimension n > 2 admits a conformal Killing
vector field v*, then v* is decomposed into the form (3.1) where p" is a Kill-
ing vector field and g* a gradient conformal Killing vector field.

Proof. Suppose that a compact orientable M with K = const. admits a
conformal Killing vector ¥*. Then we have

(3.2) Legun=V,v,+ Vv, = ngji s
and

K
3.3 do = — .
(3.3) e n—1 o

We note here that K is a positive constant [6]. If v* is the sum of a Killing
vector p* and a gradient conformal Killing vector g* = F*g, substituting (3.1)
into (3.2), we find

(3.9 ViV.q= 08 i »
from which
(3.5 dg = np .

From (3.3) and (3.5), we find
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A(‘O+ n(nK— 1)q> =0

from which, by Bochner’s lemma,

(3.6) e+ WIE_T)_ = constant .
Substituting (3.6) into (3.4), we find
K
Fivig+ o= — ————(g+0gu,
nn —1)

where ¢ is a constant. Thus, g being not a constant, M is isometric to a
sphere.

Conversely, suppose that M, isometric to a sphere, admits a conformal
Killing vector »*. It is known that * can be decomposed into

’thph+ qh,

where
3.7 V.pt=0, gr="rrq.
From
Ly =Vvi +Viv; =208 ,
we have
(3.8) T;,=V,p;+Vp; +2V;V.q—2pg;,=0.

Forming T ;,T7¢, we find
T;T7 =W ;p; + Vip)Wipt + Vipd)
(3.9) + 4(7 Via— -:Z—Aqgji> (V g — %Aqgﬁ)
+ 8 lig)V;p) =0.

On the other hand, we have

f gy ;p)dV = f T7ig)7 ;p)dV
M M
= — [ W@y ,poav
M

- _ f K, (FigpidV
M

because of
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VZVJPI — VJVzpl = Kijtipt >
or

VZVJPZ - Kjtpt .

Taking account of K ;; = LS g;; we then have
n

(@@ pav = - X [@.apav
M n M

Il

LS f a7 .pHav
n

M
=0.

Thus from (3.9), by integration we find

f [(Vjpi + Pp)Wipt + Fipd)

M
+ 4<V,-Viq - iAqgﬁ) (VfViq — lAqgfi)]dV =0,
n n
from which
(3.10) Vjpi+’7ipj:0a
(3.11) ViV.q= —:I—Aqgﬁ,

showing that p” is a Killing vector field and g* a gradient conformal Killing
vector field. '

Remark 3.1. Theorem 3.1 generalizes Theorem B, (1).

Remark 3.2. We can see in the following way the fact that a sphere ad-
mits a gradient conformal Killing vector field. Let

(3.12) X1 =X4x"), LXX4=r

be the equations of n-dimensional sphere of radius r in an (n + 1)-dimen-
sional Euclidean space, where A =1, .., n 4+ 1.

The equations of Gauss and those of Weingarten of the shpere are, re-
spectively,

(3.13) VB4 = Lg,N4,
r

and
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4 1 A
(3.14) V;N+= — Z B4,
r

where B;4 = I/, X4 and N4 are components of the unit normal to the sphere.
Considering a parallel vector field B;“u? + «N“ in the Euclidean space
along the sphere, we have

ViBAut + aN4) =0,
from which

Ly Ne £ Bap s+ (70N — %Bs=0,
.

and consequently

Vau =25, Aﬂ:—luj,
r r
thus giving
Pl = — L7
jia'—"—7 Hi s
that is,
A
Via = ;gagji-

4. Generalizations of Theorem E
We introduce here the notations :
(4.1) f = G”G]z N g = ij,;hzkj“l «

Theorem 4.1. If a compact orientable M of dimension n > 2 with K =
const. admits an infinitesimal nonhomothetic conformal transformation v*
such that

ff el e
4.2)

+ iﬁk(— = 1)kd’°($g)} <o,

l and m being nonnegative integers, and o, and B, constants such that the
l m

sums Y, a, and Y, B; are nonnegative and not both zero, then M is isometric
k=0 k=0

to a sphere.
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We need the following

Lemma 4.1. If a compact orientable M with K = const. admits an infini-
tesimal conformal transformation v*: £g;; = 20g;:, then we have

prdV: f(_ ";l)pAFdV
M

(4.3) - <_ o= 1 >2pA2FdV

for any function F and any nonnegative integer l.
Proof. Remembering

T (K >0,

that is,

we have, for any scalar field F,

prdV = f<_ e ! >(Ap)FdV,

that is,

prdV:f(— n—l)pAFdV.
M M K

Repeating the same process, we hence obtain (4.3).
Proof of the theorem. We have, from (1.16) and Lemma 4.1,

n—2 ijipjpidV - fpzde + lfpgfdv
M M 4 M

2
=fp2de+ lf<— n_l>pA5fde
M 4 M K

:fpzde+ 1 (_ ”;{ 1 )lp_/lis,ﬂde.
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We also have, from (1.17) and Lemma 4.1,
zfc;ﬁpjp-idv = fngdV + %fp,(fng
M

_fpng+4f(

:fngdv+if(— ”“l)mpAmg)ng.

) pdLgdV

From these equations, we have

{”_2 o+ o+ - +a)+ 2B+ B+ -+ +ﬁm)UGﬁpJ’p"dV
M

= [Pllan+am+ -+ + Gt B+ -+ gwelaV

1 { ( n—-l) ( n—l)Z
+ — { o1y Ef + o, | — 4Lf + -« + — VX
4.‘!{‘ o1 ! K ! e K !

+50$g+/31(—— 1)A$g+~-~

n—-l)”‘ ][
- Angpglav
+B< = g

and consequently, by Lemma 2.1,

{n—z (0o +a+ - +a) + 26+ 4 + "‘Bﬂt)]ijipjpidV
e

=fp2{(a'o+ @)+ Gt Bt e+ g}V

M

- e

M

+ a2 — L) a2t + pze
( )A$g+
+ ﬁm(— " E 1 ) Am,?g}dV.

Thus, if the conditions of the theorem are satisfied, we have
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ijipjpidV >0,
M

and consequently, by Theorem D, M is isometric to a sphere.
Theorem 4.2. Suppose that a compact orientable M of dimension n > 2
with K = const. satisfies

(4.4) aof — andf + Bog — prdg = const. ,
where a,, oy, B, B, are nonnegative constants not all zero such that, if n>> 6,

8K

4.5) Ca2(— 6020, —Sop>m-6520.
n_

If M admits an infinitesimal nonhomothetic conformal transformation v*:
£gi = 2p8;:, p * constant, then M is isometric to a sphere.

To prove the theorem, we need the following

Lemma 4.2. For a conformal Killing vector v* in M, that is, for a vector
field v* satisfying

Lew =V, + Vv, =208,
we heve
4.6) NFFY=FL(4F)+2pdF —(n — 2)pV ;F

for any scalar field F.
Proof. Since v* is a conformal Killing vector field, we have

(4.7) gjiVjVi’Uh' + Kih’l}i + (n —_ 2)‘0h = 0 N
(see [6] for example). We also have, for an arbitrary scalar field F,
(4.8) gjiVjVthF - Kh"'VzF = V)L(AF) .
Thus we have
MLF) = g V(v , F)
= (g ;F v W, F + Vvt + ViV ;V . F
-+ ’UhgjiVjVthF ,
and consequently, by using (4.7) and (4.8),
+ 2p4F + K;viVF + v*7 (4F) ,

that is,
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MNLF) = LAF + 2p4F — (n — 2)p"F , F .

Lemma 4.3. For any scalar field F and a scalar field p satisfying dp = kp,
k being a constant, in a compact orientable M we have

(4.9) f 0o Vo FdV = — L f APV

(4.10) f FUF)AV = 2k f FFdV + 2 f o' FdV .
M M M

Proof. Integral formula (4.9) follows from
PPV o F) = 2pp"F o F + p°AF

by integration. On the other hand, we have
f AAF)dF = f (4AFdV
M M
= 2f(pAp + pip)FdV
M
- 2kfp2FdV + 2fp,;piFdV :
M M

which proves (4.10).
Proof of the theorem. From (1.16), (4.3). (4.6) and (4.9), we find

—2 ijin ptdv
M

— f Fdv + L f 2tdv

4
[+ 1 - 2
=fp2de %f (~ " ! )p[.,SfAf 4 204f — (n — 2T fdV
o 3ol 2o

+Zf[_ 2(n—1)p2Af (n—l)(n—2)p2Af]dV

- [ 4[]

Thus, we have

m=—Dnr+2) (.
Af)dV e A4V .
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" 2 f G i0i0'dV = f Hav + _41_ f o ZfdV
M M M

n ;%fcﬁpjpidv = [oav + %fpg(— n—1 Af)dV
M M M
_ n= D +2) ey
8K
Similarly, we find
2fGJ,pJ ‘v = fpng + _fp,s,ﬂgdv
2fGﬂp: iy = fpng—l— _f ( Ag)dV

mn—Dn+2) (,
- N ——W—J{‘p AgdV .

From the above four equations, we obtain

{ n
plla + a’)f + (b + b)gldV
4.11) "
2 flefo-

_(n-—l)(n+2) LY, ’
—-—8]—(———£p(adf+bdg)dV,

2 @+ a)+ 20 + b/)} f G ol pidV
s

Lads + bg— = 1 b’Ag)]dV

a, @, b, b’ being nonnegative constants. Now we choose @, a’, b, b’ in such a
way that we have

—1 —
(4‘12) a0=aa alan ala 180=b> lelan b/.

Then we have, from (4.4),

(4.13) af — 1wt + bg— =1 brag = ¢ (const.)

and
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K (af + bg) — K€

ad bdg = >
f+ £ n—1 n~—1

and consequently, from (4.11),

{" = 2 a+a)+ 206+ b’)}fGﬁPjP[dV
- f pz[(a +a)f + (b + b)g

_ (“—lg;:Jf?‘){nfl (af + bg) — an HdV,

that is,

{" ~2(a+a)+20 + b')} f G pto'dV
(4.14) )

_ 1 ] ’ _ ’_ _
=5 i o [{sa (n — 6)a)f + {86’ — (n — 6)b}g + (n + 2)c]dV.

Now, constants
8a’ — (n — 6)a, 8h' — (n — 6)b
are both nonnegative for n < 6. Since

8K

8a' — (n — 6)a = a; — (n — 6)ay,

8K

8 — (n — 6)b = B — (n — 6)8,

they are nonnegative also for n > 6 by virtue of the assumption.
Moreover, we have, from (4.13),

afde—+—bfng=cde,
M M

and consequently ¢ is nonnegative.
Thus we have, from (4.14),

ijL-pjpidV >0,
M

and consequently, by Theorem D, M is isometric to a sphere.
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Theorem 4.3. If a compact orientable M of dimension n > 2 with K
= const. admits an infinitesimal nonhomothetic conformal transformation v*
such that

(4.15) LLaof + aydf + g + Pidg) <0,
&y, a1, Po, By being constants not all zero such that

4«

—”K‘-llﬁozmw)ﬁlzo,

4n—1)
4.16) %

0102(n+6)a120,

then M is isometric to a sphere.

To prove this theorem, we need the following

Lemma 4.4. If a compact orientable M of dimension n>2 with K
= const. admits an infinitesimal nonhomothetic conformal transformation v*,
then

2 4 4

(n— D(n+2) :
— ———A—K-——J;pip fav,

n—2 fGﬁ,,j,,idV —nt6 fpzfdv — 1 fp,wfdv
4.17) M 2 .

2fGﬁpfpidV _nt6 fngdv _n-1 fpydgdv
4 4K
(4.18) n M M
4K ) e 8ET

Proof. From (1.16), we have

n—2 ij,;pjpidV -——fp2de + ifpyfdv.
M M 4 M

2

n—1

Substituting p = — dp into the last term of the second member of

this equation, we find

n—2 f G pipidV = f v — =1 f (dp)&fdV
M M 4K M

2

= fotav — "L [ pscepav.,

and consequently, by (4.6),
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—2 f GpipidV = f ofdv
M M

— "L [ o(2 4+ 2081~ (n—2p7 fav .

K

n —

Thus by (4.9) and (4.10) with k = — , we find

n—2

[Guwwav = [ptav - " ! (p,wf + 2L 2 pZAf)dV
M M M

_1
= f v — f 0L AV

_(n=1D(n+2) (_ 2K
8K n—1

=”+6f2dV_”—1f,de
4 M"f K J° ;

— (n — 1)(n +—2) Pipide .

of + 200 ) AV

4K

We can similarly prove (4.18).
Proof of the theorem. We first write down (1.16), (4.17), (1.17) and
(4.18):

n—2

fcﬁp]-pidv = f GV + f ofdV
ZIG”"’ dV — n+6f Ay — 4}1fpy4de

(n—l)(n+2)f :
p:p'fdv,

2fGﬁpfpidV=fp2ng+ifpyng,
M M 4M
. 6 n—1
ZfG-iJLV="+ fzdv_ f,de
no'p'd 2 0’8 a ek
M M M

_ (n—1D@x+2) fpiping ,
M

4K

from which we obtain
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{n—Z

— 2@~ a) + 20 - b’)} f G oip'dV
M

_ 1 — 7 P) 1 _ ’ 9
=+ {4a (n+6)a}£pde+Z{4b (n+6)b}£pgdv

1 n—1 n—1
+—f x( Af + b b’A)dV
4Mp af + % a'df + bg + 7 g
(n~1)(n+2)f il ! ’
_— | 00t b'g)dV
+ AKX pip'(a’f + b'g)
M
or by Lemma 2.1,

n—2 / ’ nint
{ = (a—a)+2(b—b)}£GJz¢pdV
1 2 n (e
= L {4a— (0 + 6)a'}£pde+ %{4b—(n+6)b}£p-gdv

4.19)
n—1

e
I .
4nM af + K

(fl—l)(fl+2) il b
e S .}[.Ozp (@f + b'g)dV

aAf + bg + ”E 1 b’Ag)dV

a, a’, b, b’ being constants. Now we choose these constants so as to have

(4.20) ay,=a, a1=i§—la" Bo=0b, p=

n—lb,‘
K

Then from (4.16) we find
ba—(n+6a>0, a>0,
4b — (n + 6)b’ >0, b>0,
and
da—a)=@n+2a >0,
4b—-b)=n+2)b' >0,
and consequently

n—2

5 (@¢—d)+206-0)>0,

the equality sign occurring when and only when a = ¢’ = b = &' =0, that
is, ¢p=a; =B =5 =0.
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Thus from the assumption and (4.19), we have
M

and consequently, by theorem D, M is isometric to a sphere.
Remark 4.1. If

Flaf + o df + Bog + B14g) = constant,

179

then (4.15) is automatically satisfied. But if ¥4 = constant for a scalar field
h in a compact space, the constant must be zero, because % attains an ex-
treme value at a certain point of the space at which #h = v 2 = 0. The
same remark applies to Theorems E, 4.1, 5.1, 6.1, 6.2 and 6.4.

5. A theorem similar to that of Hsiung
To obtain Theorem F, Hsiung [2] used the tensor
aZijin + bg8unGie

but we would like to use here the tensor

(5.1 Wi = aZijn + n—ﬁi (€inGsi — 851G + Gin8is — Gja8xi) »

a and b being constants.
It 1s easily seen that

(5.2) W8 = (a + b)Gy; ,

and that, when a + b = 0,

(5.3) Wi = @Chjin
where
1
ijih = Kkjm - - -v'z (gthji — gthm' + chhgji —
5.4
! + —“—K—‘-(gkhgji - gjhglci)
n—1)n—-2)

is the covariant Weyl conformal curvature tensor.
In general, we have

thgki)
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(5.5) WesaWoit = 62,z + 2202 Db GG,
n —

and for the case a + b = 0 we have

(5.6) Wi sinWhith = @*Cy 5, CHE0

Using the tensor W, ;;, defined above we can obtain

Theorem 5.1. Suppose that a compact orientable M of dimension n > 2
with K = const. admits an infinitesimal nonhomothetic conformal transform-
ation v, If

(5.7 LLW W) <0,
or equivalently,
(5.8) (n—=2ELL(Z;;:nZ%%) + 4Q2a + b ¥ ¥ (G;;,GI) <0,

a and b being constants such that a + b = 0, M is isometric to a sphere.
To prove this theorem, we need the following
Lemma 5.1. For an infinitesimal conformal transformation v* in M : £g;,
= 2p8;:, we have
2bp
n—2

5.9 — (a + b)&inlF s0: — 85:F vpi + Vron&si — V00850

ngjih = 2aPijih + (gthji — gthki + Gkhgji — Gjhgki)

- —2—(g~niﬂdp(gkhgji — &n8kd) -

Proof. This follows from (1.10), (1.11) and
(5.10) FZriin = L(Zy5i811) = (LZysit)8un + 20250, -

Lemma 5.2. For an infinitesimal conformal transformation v* in M: #g;,
= 2p08;:, we have

(5.11) (’?ijih)wkjih = 2|0ijthkjih -_ 4(a —I— b)zG‘”VJIOZ .

Proof. This follows from (5.5) and (5.9).
Lemma 5.3. For an infinitesimal conformal transformation v in M, we
have

(5.12) g(ijthkjih) - — 4I0ij5hijHL b 8(a -+' b)gG]LVJIOL .
Proof. This follows from (5.11) and

LWy WEI) = LW o jun) W — oW i junWHIH .
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Lemma 5.4. For an infinitesimal conformal transformation v* in M with
K = constant, we have

8(a + b)YV (G ;:00Y)

(5.13
) = 8(a + b)szinPi'— 492ijianjih‘“Pg(ijthkjih) .

Proof. This follows from V//G;; = 0 and (5.12).

Lemma 5.5. If a compact orientable M of dimension n > 2 with K
= const. admits an infinitesimal nonhomothetic conformal transformation v*,
then we have

8(a + b? f G i pidV
M
(5.14) —4 f W i WEIRdV 4 fpg(W,,kaﬁh)dV
M M

= 4fp2W,,kade - lfgg(WWka)dV :
n
M M

Proof. This follows from (5.13) by integrating both sides over M and
using Lemma 2.1.

Proof of the theorem. If &L (W,; ,W¥*) <0, and a + b # 0, then
from (5.14) we have

fG”‘OJ‘OZdV 2 0 .
M
Thus by Theorem D, M is isometric to a sphere.

6. Characterizations of conformally flat spaces

Theorem 6.1. If a compact orientable M of dimension n > 3 admits an
infinitesimal conformal transformation v*: £g;, = 2pg;, such that p does not
vanish on any n-dimensional domain and

6.1) LLh <0, h = Cy;,Criee |
then M is conformally flat.

Proof. Multiplying (5.12), with a 4+ b = 0, by p and integrating the re-
sulting equation over M, we find

0= 4fp2th +fp$th ,
M M

or by Lemma 2.1,
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6.2) 0= 4fp2th - lfggth .
M r J.4
(6.2) implies
f ohdV <0,
M

from which ¢*1 = 0, or by the assumption of the theorem, 4 = 0, that is,
Crjsn = 0, which shows that M is conformally flat.

Remark 6.1. If £h = constant in a compact space, we have £h = 0.
On the other hand, if YA =0 in a general Riemannian space, from
ZLh + 4ph = 0 we find A = 0, which shows that the space is conformally flat.

Theorem 6.2. Under the same assumptions as in Theorem 6.1, if K =
const. and (6.1) is replaced by

l n — 1 13
(6.3) g{z a,,<_ ) Ak(sﬁz)} <o,
=0 K
l
I being a nonnegative integer and «, constants such that Y. «, > 0, then M
k=0
is conformally flat.

Proof. Similarly, as in the proof of Theorem 4.1 we can obtain

0=4f(a0+a1+ 14
M

+fp{a0$h + a1<— s 1)A($h) ‘..

n—1\t,
+ - | aemlav,
K
or, by virtue of Lemma 2.1,

0:4f(a0+a1+--~+al)p2dV
M

(6.4) —%fﬁf{aogh—{—al(— ”£1>A($h)+
+ al<— .’?_k—__l) ZAl(fﬁz)}dv,

z
@, @y, - - -, o being constants such that Y] a«, > 0. Thus by (6.3), we have
k=0

fp2th = 0, from which 4 = 0 and consequently Cy;;, = 0.
M
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Theorem 6.3. Under the same assumptions as in Theorem 6.1, if K =
const. and (6.1) is replaced by

(6.5) aft — a,4h = ¢ (constant),

a, and «, being positive constants such that

(6.6) 8K1a1>(n—~6)a020, for n>6,

then M is conformally flat.
Proof. Similarly, as in the proof of Theorem 4.2 we can obtain

6.7) 0= f A8’ — (n — 6)a}h + (n + 2)cldV .

Now, the constant 8a’ — (n — 6)a is positive for n < 6. Since

8K

8a’ — (n — 6)a =

1“1‘_(’1—6)“0,

by (6.6) this constant is also positive for n > 6.
On the other hand, from (6.5) we have

aofthchdV,
M M

which shows that c is a nonnegative constant.

Thus from (6.7) we see that 2 = 0 and consequently C; ;. = 0.

Theorem 6.4. Under the same assumption as in Theorem 6.1, if K =
const, and (6.1) is replaced by

(6.8) FLE(ah +adh) <0,
«, and o, being constants such that
6.9) i(ﬁl_(“_l)ao >+ 6, >0,

then M is conformally flat.
Proof. Similarly, as in the proof of Theorem 4.3 we can obtain

0={da— (n+ 6)a’}fp2th _ if_sfz(ah o 1 a’Ah)dV
n
(6.10) x S

+ (_n;%(ﬁj_i)_‘gpipi(a’h)dV s
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a and a’ being constants. Now we choose these constants such that

(6.11) a,=a, a, =

n—l_
K

4

a .

Then from (6.9) we have

4a-—(n-|-6)a’=4a0——(n+6)—K—1—a1>0.
n_

We also have

& (ah + %La’dh) = P(ah + a,dh) = constant .

Thus, from (6.10), we have 2 = O and consequently Cy;;, = 0.
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